Didactic trends in Teaching-Learning processes: a bibliometric perspective

Authors

DOI:

https://doi.org/10.47058/joa6.7

Keywords:

bibliometrics, trends, teaching, learning, Scopus

Abstract

The didactic trends in teaching-learning processes have had a significant impact worldwide due to technological changes and the evolution of teaching-learning processes and techniques. New teaching methods have become a hot topic, attracting the attention of the scientific community. The aim of this research is to show the evolution of scientific production regarding didactic trends in the teaching-learning processes indexed in Scopus, which is one of the largest databases of citations, summaries, and other metrics of different types of documents developed by researchers. For this research, quantitative bibliometrics was used as a research method to describe the most relevant terms regarding keywords, country of origin, scientific journals, and bibliographic coupling. Of the 844 documents downloaded, it was found that in the last 10 years, 63.39% of the total production were developed, with the United States being the country with the most documents (21.09%), showing that the article with the highest number of productions was Lecture Notes in Computer Science, with 14 publications. In addition, the words with the highest co-occurrence were Teaching and Education, and the authors that produced the most were Hung and Zhang.

Downloads

Download data is not yet available.

References

Abad-Segura, E., & González-Zamar, M.D. (2020). Global research trends in financial transactions. Mathematics, 8, 614. https://doi.org/10.3390/math8040614

Abellán-Toledo, Y., & Herrada-Valverde, R.I. (2016). Innovación educativa y metodologías activas en educación secundaria: La perspectiva de los docentes de lengua castellana y literatura. Fuentes, 18, 65–76. https://doi.org/10.12795/revistafuentes.2016.18.1.04

Aguilera-Ruíz, C., Manzano-León, A., Martínez-Moreno, I., Lozano-Segura, M.C., & Yanicelli, C.C. (2017). El modelo flipped classroom. International journal of developmental and educational, 4, 261–266. https://doi.org/10.17060/ijodaep.2017.n1.v4.1055

Bashir, F., & Warraich, N.F. (2020). Systematic literature review of semantic web for distance learning. Interactive Learning Environments, 1-17. https://doi.org/10.1080/10494820.2020.1799023

Baumann, J. (1988). Direct Instruction Reconsidered. Journal of Reading, 31(8), 712-718. https://n9.cl/xzn6z

Chee, K., Yahaya, N., Ibrahim, N., & Hasan, M. (2017). Review of mobile learning trends 2010-2015: A meta-analysis. Educational Technology and Society, 20(2), 113-126. https://n9.cl/pzyy

Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis. Journal of the Association for Information Science and Technology, 61, 1386-1409. https://doi.org/10.1002/asi.21309

Colomo-Magaña, E., Soto-Varela, R., Ruiz-Palmero, J., & Gómez-García, M. (2020). University students’ perception of the usefulness of the flipped classroom methodology. Education Sciences, 10, 275. https://doi.org/10.3390/educsci10100275

Culnan, M.J. (1986). The intellectual development of management information systems, 1972–1982: A co-citation analysis. Management Science, 32(2), 156–172. https://doi.org/10.1287/mnsc.32.2.156

Culnan, M.J., O’Reilly, C.A., & Chatman, J.A. (1990). Intellectual structure of research in organizational behavior, 1972–1984: A cocitation analysis. Journal of the American Society for Information Science, 41(6), 453. https://doi.org/10.1002/(sici)1097-4571(199009)41:6<453::aid-asi13>3.0.co;2-e

Danvila-del-Valle, I., Estevez-Mendoza, C., & Lara, F. (2019). Human resources training: a bibliometric analysis. Journal of Business Research, 101, 627-636. https://doi.org/10.1016/j.jbusres.2019.02.026

Erstad, O., Miño, R., & Rivera-Vargas, P. (2021). Educational practices to transform and connect schools and communities. [Prácticas educativas para transformar y conectar escuelas y comunidades]. Comunicar, 66, 9-20. https://doi.org/10.3916/C66-2021-01

Felvégi, E., & Matthew, K.I. (2012). eBooks and literacy in K-12 schools. Computers in Schools, 29(1-2), 40-52. https://doi.org/10.1080/07380569.2012.651421

Fernández-Martín, F.D., Romero-Rodríguez, J.M., Gómez-García, G., & Ramos Navas-Parejo, M. (2020). Impact of the flipped classroom method in the mathematical area: A systematic review. Mathematics, 8(12), 2162. https://doi.org/10.3390/math8122162

Garfield, E. (1979). Is citation analysis a legitimate evaluation tool? Scientometrics, 1(4), 359–375. https://doi.org/10.1007/bf02019306

González-Zamar, M.D., Ortiz-Jiménez, L., Sánchez-Ayala, A., & Abad-Segura, E. (2020). The Impact of the university classroom on managing the socio-educational well-being: A global study. International Journal of Environmental Research and Public Health, 17, 931. https://doi.org/10.3390/ijerph17030931

Herrera-Viedma E., Martinez M.A., Herrera M. (2016) Bibliometric tools for discovering information in database. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., & Kurematsu, M. (eds) Trends in Applied Knowledge-Based Systems and Data Science. IEA/AIE 2016. Lecture Notes in Computer Science, vol 9799. Springer, Cham. https://doi.org/10.1007/978-3-319-42007-3_17

Hung, J., & Zhang, K. (2012). Examining mobile learning trends 2003-2008: A categorical meta-trend analysis using text mining techniques. Journal of Computing in Higher Education, 24, 1-17. https://doi.org/10.1007/s12528-011-9044-9

Joel, O. P. (2019). Learning environment, achievement motivation and career decision making among gifted secondary school students. American Journal of Education and Learning, 4, 50–61. https://doi.org/10.20448/804.4.1.50.61

Miksza, P., & Tan, L. (2015). Predicting collegiate wind players’ practice efficiency, flow, and self-efficacy for self-regulation: An exploratory study of relationships between teachers’ instruction and students’ practicing. Journal of Research in Music Education, 63, 162–179. https://doi.org/10.1177/0022429415583474

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation in communities of practice. Cambridge University Press. https://doi.org/10.1017/cbo9780511815355

Mortazavi, M., Tansu-Hocan?n, F., & Davarpanah, A. (2020). Application of quantitative computer-based analysis for student’s learning tendency on the efficient utilization of mobile phones during lecture hours. Sustainability, 12(20), 8345. https://doi.org/10.3390/su12208345

Nobre, G.C., & Tavares, E. (2017). Scientific literature analysis on big data and internet of things applications on circular economy: A bibliometric study. Scientometrics, 111(1), 463-492. https://doi.org/10.1007/s11192-017-2281-6.

Osborne, M.S., McPherson, G.E., Miksza, P., & Evans, P. (2020). Using a microanalysis intervention to examine shifts in musicians’ self-regulated learning. Psychology of Music. https://doi.org/10.1177/0305735620915265

Parra-González, M., Segura-Robles, A., & Vicente-Bújez, M., & López-Belmonte, J. (2020). Production analysis and scientific mapping on active methodologies in Web of Science. International Journal of Emerging Technologies in Learning (IJET), 15(20), 71-86. https://doi.org/10.3991/ijet.v15i20.15619

Ramos, C. (2021). Scientific production in higher education: The case of Perú. Psychology and Education Journal, 58(5), 5556-5566.

Ramos-Meza, C. (2021). Análisis bibliométrico de la alfabetización académica: una revisión del estado del arte, del pasado al futuro. Revista de Educación, 394. https://doi.org/10.4438/1988-592X-RE-2021-394-501

Sáez-López, J., Sevillano-García, M., & Pascual-Sevillano, M. (2019). Application of the ubiquitous game with augmented reality in primary education. [Aplicación del juego ubicuo con realidad aumentada en Educación Primaria]. Comunicar, 61, 71-82. https://doi.org/10.3916/c61-2019-06

Shakiba, M., Zavvari, A., Aleebrahim, N., & Singh, M.J. (2016). Evaluating the academic trend of RFID technology based on SCI and SSCI publications from 2001 to 2014. Scientometrics, 109(1), 591–614. https://doi.org/10.1007/s11192-016-2095-y

Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the Association for Information Science and Technology, 24(4), 265–269. https://doi.org/10.1002/asi.4630240406

Smallwood, J., Fishman, D., & Schooler, J. (2007). Counting the cost of an absent mind: Mind wandering as an underrecognized influence on educational performance. Psychonomic Bulletin & Review, 14, 230–236. https://doi.org/10.3758/BF03194057

Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3

Vosner, H., Kokol, P., Bobek, S., Zeleznik, D., & Zavrsnik, J. (2016). A bibliometric retrospective of the journal computers in human behavior (1991-2015). Computers in Human Behavior, 65, 46-58. https://doi.org/10.1016/j.chb.2016.08.026

Vygotsky, L., Cole, M., John-Steiner, V., Scribner, S., & Souberman, E. (1978). Mind in Society. Harvard University Press. https://n9.cl/68w74

Zimmerman, B.J. (2008). Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. American Educational Research Journal, 45(1), 166–183. https://doi.org/10.3102/0002831207312909

Zimmerman, B.J. (2013). From cognitive modeling to self-regulation: A social cognitive career path. Educational Psychologist, 48(3), 135–147. https://doi.org/10.1080/00461520.2013.794676

Published

2022-01-01

Issue

Section

Research Articles

How to Cite

Didactic trends in Teaching-Learning processes: a bibliometric perspective. (2022). Journal of the Academy, 6, 105-126. https://doi.org/10.47058/joa6.7