Posibilidades y límites de la inteligencia artificial en el desarrollo de investigaciones en una universidad privada 2024
Possibilities and Limitations of Artificial Intelligence in the Development of Research in a Private University In 2024.
DOI:
https://doi.org/10.47058/joa13.4Keywords:
Artificial intelligence, Higher Education, thesis proposals, theses, private universityAbstract
This qualitative case study explored the possibilities and limitations of artificial intelligence (AI) in undergraduate research development processes at a private university during 2024. The objectives were to understand how students and faculty perceive and utilize AI in their research, identify benefits and challenges associated with its implementation, and propose recommendations for optimizing its use. The methodology consisted of a single case study with four participants selected through convenience sampling, utilizing semi-structured interviews with students and faculty (40 minutes each), along with documentary analysis of thesis plans and final projects. Results suggest that AI offers various possibilities including idea generation, information searching, and task automation. However, limitations were identified regarding the quality of generated data, lack of skills for critically evaluating information, and the need for faculty supervision. Findings reveal that while AI tools can be useful for generating initial ideas and improving formal aspects of academic work, excessive use may limit students' capacity to develop original topics, inhibit critical thinking, and generate technological dependence. Results indicate the need to find balance between leveraging AI advantages and developing higher-order cognitive skills, suggesting that implementation should be complementary rather than substitutive to traditional research processes, requiring adequate faculty and institutional training. The study concludes that strategic AI integration in undergraduate research demands establishing ethical frameworks, developing critical competencies, and promoting equilibrium between technological utilization and autonomous thinking development.
Downloads
References
Abbas, M., Jam, F. A. y Khan, T. I. (2024). Is it harmful or helpful? Examining the causes and consequences of generative AI usage among university students. International journal of educational technology in higher education, 21(1), 10. https://doi.org/10.1186/s41239-024-00444-7
Acosta-Enríquez, B., Arbulú Ballesteros, M., Arbulú Pérez, C., Orellana Ulloa, M., Gutiérrez Ulloa, C., Pizarro Romero, J., Gutiérrez Jaramillo, N., Cuenca Orellana, H., Ayala Anzoátegui, D. y López Roca, C. (2024). Knowledge, attitudes, and perceived ethics regarding the use of ChatGPT among generation Z university students. International Journal for Educational Integrity, 20. https://doi.org/10.1007/s40979-024-00157-4
Braun, V. y Clarke, V. (2023). Is thematic analysis used well in health psychology? A critical review of published research, with recommendations for quality practice and reporting. Health Psychology Review, 17(4), 695-718. https://doi.org/10.1080/17437199.2022.2161594
Chan, C. K. (2023). A comprehensive AI policy education framework for university teaching and learning. International Journal of Educational Technology in Higher Education, 20, 38. https://doi.org/10.1186/s41239-023-00408-3
Corona, J. L. (2018). Investigación cualitativa: Fundamentos epistemológicos, teóricos y metodológicos. Vivat Academia. Revista de Comunicación, (144), 69-76. https://doi.org/10.15178/va.2018.144.69-76
Cotton, D. R. E., Cotton, P. A. y Shipway, J. R. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 61(2), 228-239. https://doi.org/10.1080/14703297.2023.2190148
Crompton, H. y Burke, D. (2023). Artificial intelligence in higher education: The state of the field. International Journal of Educational Technology in Higher Education, 20, 22.
Doshi, A. R. y Hauser, O. P. (2024). Generative AI enhances individual creativity but reduces the collective diversity of novel content. Science advances, 10(28).
Gallent-Torres, C., Zapata-González, A. y Ortego-Hernando, J. L. (2023). El impacto de la inteligencia artificial generativa en educación superior: Una mirada desde la ética y la integridad académica. RELIEVE. Revista Electrónica de Investigación y Evaluación Educativa, 29(2). https://www.redalyc.org/journal/916/91676028011/html/
Jacobsen. P. (11 de febrero de 2023). Por qué ChatGPT cambiará para mejor la educación superior. FEE La Fundación para la Educación Económica. https://fee.org.es/articulos/por-qu%C3%A9-chatgpt-cambiar%C3%A1-para-mejor-la-educaci%C3%B3n-superior/
Navarro-Dolmestch, R. (2023). Descripción de los riesgos y desafíos para la integridad académica de aplicaciones generativas de inteligencia artificial. Derecho PUCP, (91), 231-270. https://doi.org/10.18800/derechopucp.202302.007
Ocen, S., Elasu, J., Manjeri, S. y Olupot, C. (2025). Artificial intelligence in higher education institutions: Review of innovations, opportunities and challenges. Frontiers in Education, 10. https://doi.org/10.3389/feduc.2025.1530247
Rädiker, S. y Kuckartz, U. (2020). Análisis de datos cualitativos con MAXQDA Texto, Audio, Video. MAXQDA Press. https://www.maxqda-press.com/wp-content/uploads/sites/4/978-3-948768003.pdf
Ribeira, C. y Díaz, A. (Coords.). (2024). ChatGPT y educación universitaria: Posibilidades y límites de ChatGPT como herramienta docente. Editorial Octaedro.
Skate, R. E. (1999). Investigación con estudios de casos. Ediciones Morata. https://www.uv.mx/rmipe/files/2017/02/investigacion-con-estudios-de-caso.pdf
Yin, R. K. (2018). Case study research and applications: Design and methods. 6a ed. SAGE Publications.
Published
Issue
Section
License
Copyright (c) 2025 Ing. Vanessa Saenz Gandarillas, Oscar Rafael Guillen Valle

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
