Artificial intelligence in advertising: a systematic review of the 2020-2024 decade

Authors

DOI:

https://doi.org/10.47058/joa11.4

Keywords:

Machine Learning, Ad personalization, Communication, Algorithmic ethics, Advertising strategies

Abstract

This study aims to explore the impact of artificial intelligence on advertising applied in companies during the period 2020 - 2024. A methodology based on the review of scientific literature published in Scopus and Web of Science was used to identify trends, advancements, and changes in the use of artificial intelligence for executing advertising strategies. Using the PRISMA methodology, 20 relevant research articles addressing the role of artificial intelligence in advertising were selected and analyzed. The results indicate that artificial intelligence has a significant impact on advertising by enabling more precise and personalized communication with consumers. Advances in machine learning and neural networks have improved the effectiveness of advertising campaigns. However, challenges persist regarding consumers' perception and acceptance of artificial intelligence, highlighting the need to address ethical and privacy issues. The findings underscore the importance of adapting AI strategies to the emotional needs and awareness levels of consumers to maximize their effectiveness.

Downloads

Download data is not yet available.

References

Arango, L., Singaraju, S. y Niininen, O. (2023). Consumer Responses to AI-Generated Charitable Giving Ads. Journal of Advertising, 52(4), 486–503. https://doi.org/10.1080/00913367.2023.2183285

Campbell, C., Plangger, K., Sands, S., Kietzmann, J. y Bates, K. (2022). How Deepfakes and Artificial Intelligence Could Reshape the Advertising Industry. The Coming Reality of AI Fakes and Their Potential Impact on Consumer Behavior. Journal of Advertising Research, 62(3), 241–251. https://doi.org/10.2501/JAR-2022-017

Casas Anguita, J., Repullo Labrador, J. R. y Donado Campos, J. (2003). La encuesta como técnica de investigación. Elaboración de cuestionarios y tratamiento estadístico de los datos (I). Atención Primaria, 31(8), 527-538. Ahttps://doi.org/10.1016/S0212-6567(03)70728-8

Chen, Y., Kapralov, M., Canny, J. y Pavlov, D. (2009). Factor modeling for advertisement targeting. Advances in neural information processing systems, 22.

Choi, J. A. y Lim, K. (2020). Identifying machine learning techniques for classification of target advertising. ICT Express, 6(3), 175–180. https://doi.org/10.1016/J.ICTE.2020.04.012

Ciuchita, R., Gummerus, J. K., Holmlund, M. y Linhart, E. L. (2023). Programmatic advertising in online retailing: consumer perceptions and future avenues. Journal of Service Management, 34(2), 231–255. https://doi.org/10.1108/JOSM-06-2021-0238

Creswell, J. (2014). A Concise Introduction to Mixed Methods Research. 1a ed. SAGE Publications, Inc.

Davenport, T., Guha, A., Grewal, D. y Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48, 24–42. https://doi.org/10.1007/s11747-019-00696-0

Efthymiou, F., Hildebrand, C., de Bellis, E. y Hampton, W. H. (2024). The power of AI-generated voices: How digital vocal tract length shapes product congruency and ad performance. Journal of Interactive Marketing, 59(2), 117-134. https://doi.org/10.1177/10949968231194905

Ferruz-González, S., Sidorenko-Bautista, P. y Santos-López, C. (2023). Neuromarketing e inteligencia artificial: el caso de la campaña 'con mucho acento' de Cruzcampo. Index.Comunicacion. 13(2), 147-169. https://doi.org/10.33732/ixc/13/02Neurom

Frankish, K. y Ramsey, W. (2014). The Cambridge Handbook of Artificial Intelligence. Cambridge University Press.

Guerreiro, J., Loureiro, S. M. C. y Ribeiro, C. (2022). Advertising acceptance via smart speakers. Spanish Journal of Marketing - ESIC, 26(3), 286–308. https://doi.org/10.1108/SJME-02-2022-0028

Halpin, H. (2023). The Hidden History of the Like Button: From Decentralized Data to Semantic Enclosure. Social Media + Society, 9(3). https://doi.org/10.1177/20563051231195542

Ho, S.P.S. y Chow, M.Y.C. (2024). The role of artificial intelligence in consumers’ brand preference for retail banks in Hong Kong. Journal of Financial Services Marketing, 29, 292–305. https://doi.org/10.1057/s41264-022-00207-3

Huang, M. y Rust, R. (2018). Artificial Intelligence in Service. Journal of Service Research, 21(2), 155-172. https://doi.org/10.1177/1094670517752459

Janiesch, C., Zschech, P. y Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31, 685-695. https://doi.org/10.1007/s12525-021-00475-2

Kerr, G. y Richards, J. (2020). Redefining advertising in research and practice. International Journal of Advertising, 40(2), 175-198. https://doi.org/10.1080/02650487.2020.1769407

Kuang, A., Lim, T., Tan, C., Ho, C. y Husaini, N. (2024). AI Ads: Practicability of Text Generation for F&B Marketing. Journal of Logistics, Informatics and Service Science, 11(2), 324-345. https://doi.org/10.33168/JLISS.2024.0220

Lee, J., Jung, O., Lee, Y., Kim, O. y Park, C. (2021). A Comparison and Interpretation of Machine Learning Algorithm for the Prediction of Online Purchase Conversion. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1472–1491. https://doi.org/10.3390/JTAER16050083

Li, C., Fang, Y. y Chiang, Y. (2023). Can AI chatbots help retain customers? An integrative perspective using affordance theory and service-domain logic. Technological Forecasting & Social Change, 197. https://doi.org/10.1016/j.techfore.2023.122921

Liu-Thompkins, Y., Okazaki, S. y Li, H. (2022). Artificial empathy in marketing interactions: Bridging the human-AI gap in affective and social customer experience. Journal of the Academy of Marketing Science, 50, 1198–1218. https://doi.org/10.1007/S11747-022-00892-5

Mani, G. (2021), Artificial Intelligence's Grand Challenges: Past, Present, and Future. AI Magazine, 42(1), 61-75. https://doi.org/10.1002/j.2371-9621.2021.tb00012.x

Matz, S. C., Teeny, J. D., Vaid, S. S., Peters, H., Harari, G. M. y Cerf, M. (2024). The potential of generative AI for personalized persuasion at scale. Scientific Reports, 14. https://doi.org/10.1038/s41598-024-53755-0

Méndez-Suárez, M., Simón-Moya, V. y Muñoz-de Prat, J. M. (2023). Do current regulations prevent unethical AI practices? Journal of Competitiveness, 15(3), 207–222. https://doi.org/10.7441/JOC.2023.03.11

Miralles-Pechuán, L., Ponce, H. y Martínez-Villaseñor, L. (2020). A 2020 perspective on “A novel methodology for optimizing display advertising campaigns using genetic algorithms. Electronic Commerce Research and Applications, 40. https://doi.org/10.1016/j.elerap.2020.100953

Moher, D., Stewart, L. y Shekelle, P. G. (2016). Implementing PRISMA-P: recommendations for prospective authors. Systematic Reviews, 5. https://doi.org/10.1186/s13643-016-0191-y

Nesterenko, V., Miskiewicz, R. y Abazov, R. (2023). Marketing Communications in the Era of Digital Transformation. Virtual Economics, 6(1), 57–70. https://doi.org/10.34021/ve.2023.06.01(4)

Peña Vera, T. y Pirela Morillo, J. (2007). La complejidad del análisis documental. Información, cultura y sociedad, (16), 55-81. https://www.scielo.org.ar/pdf/ics/n16/n16a04.pdf

Ramos-Galarza, C. (2020). Los alcances de una investigación. CienciAmérica, 9(3), 1-6. http://dx.doi.org/10.33210/ca.v9i3.336

Richards, J. y Curran, C. (2002). Oracles on ‘Advertising’: Searching for a Definition. Journal of Advertising, 31(2), 63–77. https://doi.org/10.1080/00913367.2002.10673667

Rodgers, W. y Nguyen, T. (2022). Advertising Benefits from Ethical Artificial Intelligence Algorithmic Purchase Decision Pathways. Journal of Business Ethics, 178, 1043–1061. https://doi.org/10.1007/S10551-022-05048-7

Sabharwal, D., Sood, R. S. y Verma, M. (2022). Studying the Relationship between Artificial Intelligence and Digital Advertising in Marketing Strategy. Journal of Content, Community & Communication, 16(8), 118-126.

Sands, S., Campbell, C. L., Plangger, K. y Ferraro, C. (2022). Unreal influence: leveraging AI in influencer marketing. European Journal of Marketing, 56(6), 1721–1747. https://doi.org/10.1108/EJM-12-2019-0949

Sands, S., Campbell, C., Ferraro, C., Demsar, V., Rosengren, S. y Farrell, J. R. (2024). Principles for advertising responsibly using generative AI. Organizational Dynamics, 53(2). https://doi.org/10.1016/j.orgdyn.2024.101042

Suraña?Sánchez, C. y Aramendia-Muneta, M. E. (2024). Impact of artificial intelligence on customer engagement and advertising engagement: A review and future research agenda. International Journal of Consumer Studies, 48(2). https://doi.org/10.1111/ijcs.13027

Tapu, R., Mocanu, B. y Zaharia, T. (2020). DEEP-AD: A Multimodal Temporal Video Segmentation Framework for Online Video Advertising. IEEE Access, 8, 99582–99597. https://doi.org/10.1109/ACCESS.2020.2997949

Taylor, C. R. y Carlson, L. (2021). The future of advertising research: New directions and research needs. Journal of Marketing Theory and Practice, 29(1), 51-62. https://doi.org/10.1080/10696679.2020.1860681

Urrútia, G. y Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507-511. https://doi.org/10.1016/j.medcli.2010.01.015

Voorveld, H. A., Meppelink, C. S. y Boerman, S. C. (2023). Consumers’ persuasion knowledge of algorithms in social media advertising: identifying consumer groups based on awareness, appropriateness, and coping ability. International Journal of Advertising, 43(6), 960-986 https://doi.org/10.1080/02650487.2023.2264045

Wang, Z., Yuan, R., Luo, J., Liu, M. J. y Yannopoulou, N. (2023). Does personalized advertising have their best interests at heart? A quantitative study of narcissists’ SNS use among Generation Z consumers. Journal of Business Research, 165. https://doi.org/10.1016/J.JBUSRES.2023.114070

Wen, L., Lin, W. y Guo, M. (2022). Study on Optimization of Marketing Communication Strategies in the Era of Artificial Intelligence. Mobile Information Systems, 2022. https://doi.org/10.1155/2022/1604184

West, D., Koslow, S. y Kilgour, M. (2019). Future Directions for Advertising Creativity Research. Journal of Advertising, 48(1), 102-114. https://doi.org/10.1080/00913367.2019.1585307

Yin, J. y Qiu, X. (2021). Ai technology and online purchase intention: Structural equation model based on perceived value. Sustainability, 13(10). https://doi.org/10.3390/su13105671

Zatonatska, T., Dluhopolskyi, O., Artyukh, T. y Tymchenko, K. (2022). Forecasting the Behavior of Target Segments to Activate Advertising Tools: Case of Mobile Operator Vodafone Ukraine. Economics, 10(1), 87–104. https://doi.org/10.2478/EOIK-2022-0005

Published

2024-10-11

Issue

Section

Research Articles

How to Cite

Artificial intelligence in advertising: a systematic review of the 2020-2024 decade. (2024). Journal of the Academy, 11, 53-82. https://doi.org/10.47058/joa11.4